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Summary

The basic solution to the problem of mechanical

contact between elastically deforming solids was

proposed by Hertz over a century ago and has been used

by tribologists and others ever since in a steadily

increasing number of applications. While the theoretical
development is not conceptually difficult and treatments

exist to suit all tastes, it is nonetheless interesting to trace

the relationships among the solutions in different

dimensions. Such an approach is used herein to shed light

on the curious and sometimes perplexing behavior of line

contacts. A final object of this brief review is simply to

gather a number of the more frequently used contact

expressions together as a convenient reference and for
comparative purposes.

then solved in an analogous manner. From this, an

approximate solution for a roller squeezed between

parallel flats is derived and compared to the exact result.

While the conventional Hertz analysis correctly yields the

contact width for such configurations, its prediction for

the compliance of nonplanar bodies is poor. This may be

improved substantially by using elastic solutions

specifically accounting for the geometry of the deforming
body.

Finally, a comparative tabulation of the more useful

formula in three and two dimensions is given. Since it is

not one of our present aims, no exhaustive list of

applications of Hertz theory is provided herein.

Reference, however, may usefully be made to the

bibliography compiled in reference 1.

Introduction

In a recent review (ref. 1) Johnson first summarizes the

fundamentals of contact mechanics as originally worked

out by Hertz and then considers many of the subsequent

developments and applications of the Hertz solution. For

the great majority of cases, an application of Hertz

theory requires little more than selecting the correct

formula, and this end could be served by a simple
handbook compilation. Subtleties do sometimes arise

when using such expressions, however, particularly for

line contacts where stresses and strains due to loading of

a boundary element diminish at large distances only as
fast as the inverse of the distance from that element. This

implies that the material displacements themselves
actually diverge logarithmically with distance, and if no

boundaries intervene, the result may be hard to interpret.

For such situations, an appreciation of the derivation of

the expressions and the underlying assumptions becomes
valuable.

Beginning with a fundamental solution to the problem

of a point force on an elastic half-space, we first show

how it is used to yield the solution for the problem of

frictionless contact between the half-space and a rigid
ellipsoidai punch. This fundamental point force solution

is then transformed to the solution for a line force acting

on the half-space, the equivalent of the point force

problem in two dimensions. The problem of contact by a

rigid circular punch, a cylinder in three dimensions, is

Symbols

A 0 semiaxis of ellipsoid in x-direction, m

a contact semiminor axis in three dimensions, m;
contact semiwidth in two dimensions, m

a 0 semiminor axis of ellipsoid cross section in
contact plane, m

B complete elliptic integral

B 0 semiaxis of ellipsoid in y-direction, m

b contact semimajor axis in three dimensions, m

b 0 semimajor axis of ellipsoid cross section in

contact plane, m

bounding curve of contact region S

semiaxis of ellipsoid in z-direction, m

complete elliptic integral; diameter of body in
z-direction, m

compliance, m

compliance datum, m

Young's modulus, Nm - 2

complete elliptic integral of second kind

total load in three dimensions, N

general complete elliptic integral

complete elliptic integral of first kind

argument of complete elliptic integral

contact pressure in z-direction, Nm - 2
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mean contact pressure, Nm- 2

maximum (central) contact pressure, Nm- 2

total load per unit length in two dimensions,
Nm-1

radial polar coordinate, m; reciprocal of sum of

principal curvatures of ellipsoid,

(Rxl+Ry]) -], m; radius of circular
cylinder, m; reciprocal of sum of curvatures

for two cylinders, (Ri- 1+R2- l)- l, m

radius of sphere, m

radial spherical coordinate, m; radial polar

coordinate in S, m

surface of contact region

elastic displacement vector components, m

Cartesian coordinates, m

axial cylindrical coordinate, m

ratio of principal curvatures of ellipsoid, Ry/R x

Euler's constant

ratio of difference to sum of principal
curvatures of ellipsoid

eccentricity of contact ellipse

nondimensional z-coordinate, z/a

azimuthal cylindrical coordinate

ratio of major to minor axis of contact ellipse,

b/a (ellipticity)

Poisson's ratio

nondimensional x-coordinate, x/a

radial cylindrical coordinate, m

normal stress, Nm - 2

shear stress, Nm- 2

azimuthal polar coordinate in S

azimuthal polar coordinate; digamma function

Fundamental Point Force Solution

Any convenient starting point may be adopted in

deriving the stress tensor to solve a given elasticity

problem. If the final result satisfies all the general and
specific conditions of the problem, then the solution is

acceptable. Thus, the stress tensor for the problem of a

concentrated point force acting along the normal to the

plane undeformed surface of an elastic half-space is
chosen here as starting point, even though it too may be

constructed from still more elementary results.

Since the force provides a symmetry axis for the basic

problem, the coordinates most suited to its description

Y
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(a) Cylindrical polar coordinates used for a point force F acting in

z-direction at the origin on the bounding surface of an elastic half-

space.

(b) Plane polar coordinates used for a line force q acting in z-direction

in x = 0 plane on bounding surface of elastic half-space.

Figure l.--Coordinate systems used in elasticity problems.

are the cylindrical system (p,0,z) shown in figure l(a). In

reducing the dimensionality of the problem to discuss line
contact parallel to the y-axis, a system of plane polar

coordinates (R,_b) in the x,z-plane is convenient, and

these appear in figure l(b). Once symmetry is violated, as

in the ellipsoidal contact problem, the Cartesian system
(x,y,z) provides a set of fixed directions for

superimposing stresses arising from parallel but displaced
point forces. It is straightforward to transform between

the two polar systems by using the Cartesian system as

intermediary.

Consider a point force F acting along the positive
z-axis on the boundary surface z=0 of an elastic half-

space defined by z>0 and having elastic constants E

(Young's modulus) and u (Poisson's ratio). By symmetry,

polar angle 0 does not appear in the stress tensor and

components 7-00 and 7-Oz vanish. The four remaining
components are given by reference 2:



r[ zoo= _-j

3F z 3
°z- 2r r5

aO = _(1 -2v) - _ + p2r--+ r3

3F pZ 2

r°z- 27r r5

where

r= (x2 +y2 + Z2)1/2 = (/92 + Z2)1/2

(1)

is the spherical radial coordinate giving the distance from

the point of application of the force. These stress

components satisfy the general requirements of

mechanical equilibrium and compatibility. They diminish

to zero as the inverse square of r at large distance. On the

plane boundary, components oz and roz vanish except at
the origin, and the net force acting over any

hemispherical surface centered on the origin is readily
shown to be F in the positive z-direction, independent of

its radius. These are the special requirements of the

singular solution (eq. (1)) which ensures that it describes

the correct physical problem. The displacements in the
directions of increasing (p,O,z) compatible with equations

(1) are found to be

(1-2v)(l+v)F r z 1 ozz]
u = 27tEa Lr - 1 + (1 - 2v) r3 J

(2a)

v = 0 (2b)

F [(1 + v)z 2 2(_f_ ]w = _ r----T---+ (2c)

Clearly, u and w are singular at the origin while the
arbitrary reference value zero at infinity is approached as

r- 1. To be physically acceptable, the singularities may be

imagined to be excluded by replacing the point force with

an appropriate distribution of stress over a finite surface

enclosing a small volume around the origin. Strictly this

distribution should be that given by equations (1),

although, in practice, St. Venant's principle allows us to

relax this requirement and to use any distribution which
yields the same resultant force from the small excluded
volume.

Contact In Three Dimensions

Rigid Ellipsoid and Elastic Half-Space

Clearly, the point force in equation (1) may be replaced

by the force p 6S acting over a sufficiently small surface

element 6S due to any given distribution of normal
pressure p on the boundary, and by linear superposition

the net stresses and displacements will be obtained by

suitably integrating the resulting expressions. In the

contact of a rigid punch of any given shape with the half-

space the problem is to find what pressure distribution

acting within the actual contact area S will deform the

plane such that its shape exactly matches the punch

throughout S. This matching condition, it turns out, is
sufficient to determine uniquely the bounding curve C of

S as well as the pressure distribution within it; hence, the

stress and strain may be found for any point in the half-

space. In the absence of friction, the shear stress at the

surface is everywhere zero.

To simplify the problem for illustrative purposes, we

consider matching only the normal displacement

component w, assuming that frictionless slip
accommodates the radial movement u within the contact

region required by the solution. The problem of matching
radial displacements has been considered by Goodman

(ref. 3). In the contact plane z = 0, equation (2c) becomes

tSw= 1 ptSS (3)
rE' r

by replacing F with p 6S and introducing the plane strain

modulus E' =E/(1-v2). The net displacement at any

point M in the contact plane can be found most easily by
setting up the local polar coordinates (r,O) shown in

figure 2, since in this system 6S/r = &b 6r is independent
of the coordinates. Hence, we have

'SSw M = _ p(r, O) dr ddp
s

(4)

In the neighborhood of the contact, occurring at an

extremum of the punch with respect to the contact plane,

the shape may be written by suitably orienting axes in the

general principal axis form

X2 y2

Zp = d- 2R x 2Ry (5)
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Figure 2.--Local polar coordinates in contact region of loaded elastic

half-space showing contact bounding curve C.

where R x and Ry are the two principal radii of curvature

of the punch at the extremum and d is the penetration

depth of this tip, lying on the z-axis. Later we will further

assume Ry>R x so that the elliptical cross section has its

major axis in the y-direction.

The projection of C on the contact plane is now

assumed to be elliptical (C in general will not be a plane

curve) with semiaxes (a,b) along (x,y) while the pressure

distribution is semiellipsoidal:

X 2 y2 ) 1/2p(x,y)=po 1 a2 b2 (6)

Integrating p within C yields the total load F:

2

F= _Po_rab (7)

so that the average pressure F/_rab is just two-thirds of its

central maximum value P0. The consistent determination

of (a,b) in terms of (Rx, R v) constitutes a complete

solution of this problem, since the stress tensor is then

known in terms of various integrals within C. The

solution also yields the penetration depth d which in the

three-dimensional problem may be physically visualized

as the depth of the tip of the indenter relative to the

undeformed boundary of the half-space at large

distances.

If M in equation (4) is the point (x,y),

WM(X,y ) = _,,

S

(Y+binO)2]l/2dr dO (8)

and the matching condition is simply

WM(X,y) = Zp(X,y) (9)

Performing the r integration first, the integrand may be

cast in the standard form [o<- 2/3r-3'r2] 1/2 to yield

/3+3'r [o_ 2/3r- 3'r2]1/2+ °_3'+/32- arc sin /3+3"r

23, 23'3/2 (oly + _2)1/2

The 0 dependence of the coefficients (oe,/3,3') is such that

incrementing 0 by rc leaves o_ and -/invariant but changes

the sign of/3. Thus, at the lower limit r = 0, the coefficient

ensures that the subsequent 0 integration of both terms in

the interval 0 to 2r will yield zero. At the upper limit of r,

where the bracket vanishes, the arc sin gives _-/2 and we

are left with

S2_rWM(X,y ) = PO oe3"+ 132
_7 0 3'3/2 dO

(10)

Examining next the (x,y) dependence of this remaining

0 integrand, we find a term independent of (x,y) and

terms quadratic in x and y, all of which are invariant

when adding 7r/2 to 0- A fourth term, bilinear in x and y,

changes sign. Taking advantage of this property and

substituting for _ and/3 give the result

f r/2 (WM(X,y ) = PO 1 x2 sin2 O

E; 0 3"1/2 a2b2 3"3/2

y2 COS2 _b "_
dO

a2b2 3,3/2 / (11)

where 3' = (cos2 O)/a2 + (sin2 O)/b2. This has precisely the

functional form required by the matching condition (eq.

(9)). Thus, the choices for C and p(x,y) in equation (6) are

self-consistent, and it at once becomes possible to

determine the axes of the contact ellipse in terms of the

principal radii of the indenter. To obtain these in

standard form, we first introduce two notations:

K=b/a (12)

[ (_)]1/2A----_ 1- 1- sin2 0 =-071/2 (13)
K

It is always possible to satisfy K_I by appropriately

naming the (x,y) axes relative to the principal directions

of the punch.

Comparing the terms in equations (5) and (11) shows

the following relationships must hold:



f_r/2 f_r/21 _ PO 1 sin2 0 d' PO r COS2__0 do' (14)
2R x E' Kb 0 _ -O= E7 _ o

1 _ Po 1 cos2q5 , P o 1 sin2OdO(15)
2Ry E' Kb 0 _ do = E' Kb o

where the second form has been obtained by simple

partial integration to yield the standard complete elliptic

integrals B and D, as displayed in appendix A. The

argument (1-K 2)1/2 of these functions is just the
eccentricity _ of the contact ellipse. Correspondingly, an

expression for the penetration depth d is found from the

term independent of (x,y) in equation (11):

7r/2
PO b l

d= E, _ A do
0

(16)

In this form d is clearly proportional to the elliptic

integral K(0.
To complete the solution it is necessary to determine

the eccentricity _, or equivalently K, from the known

principal curvatures of the indenter. In terms of the ratio

c_-Ry/R x, equations (14) and (15) may at once be solved
for K to give

K= _ (17)

Substituting for the elliptic integrals B and D in favor of

K and _;x gives

r= (c_+l) -o_ (18)

From equation (5), a condition for the contact

boundary C to be a plane curve is that the radius ratio

should be equal to the square of the axial ratio K2.

Equation (17) however shows this can hold only if B=D,
which occurs when e =0, the special case of circular

contact. In general C is not plane.
When the punch has penetrated to depth d beneath the

surface z = 0, its elliptic cross section in this plane has

semiaxes (ao, bo) given according to equation (5) by

a°2 - b°2 -d (21)
2R x 2Ry

From equations (14) to (16) the semiaxes of C satisfy the

relation

1 1 b2 -_dl (22)
21_ a + 2Ry a a

which in combination with equation (21) leads to the

interesting and perhaps unanticipated result

a2 b2
= 1 (23)

a_ + b_0

This simple expression is useful in avoiding the pitfall of

setting (a,b)= (ao, bo). In the y = 0 plane, this distinction

between a and a0 is shown graphically in figure 3.
Adding equations (14) and (15) and substituting the

total load F from equation (7) yield an explicit expression

for the semimajor axis of C:

Alternative forms of equations (17) and (18) often

appear in which the dimensionless ratio o_is replaced by I"
defined as the ratio of the difference to the sum of the

principal curvatures. Thus, if R- ] =-R x I +Ry- 1 is the

sum of the curvatures, then I'=(Rx I -Ryl)R and the

equations for K become, respectively,

(I+FD) 1/2 (19)K= 1-r

and

2K- (1 + r)_; ] 1/2 (20)
K=L -d--F)g J

R X

/
I

_a 0

I

I

i

Figure 3.--In y = 0 plane, ellipsoidal punch appears approximately cir-
cular with radius Rx. Its intercept at x=a o with initial contact plane
z=0 is compared with contacl semiaxis a.



b= (B+D/K2) = \ _ (24)

The semiminor axis a = b/_ then becomes

a= \ r_-F-! (25)

while the penetration depth d is given by

K (3FRg _2/3 K a2 (26)d= 2_ \7_-7-! = 2_

Since K and R are fixed by the geometry of the rigid

indenter, independent of load, it follows from equations
(24) to (26) that the linear dimensions of the contact

ellipse grow as the one-third power of the load, while the
penetration depth accordingly increases as the two-thirds

power.

For given c_, equation (17) or its equivalents (eqs. (18)

to (20)) are transcendental equations for K which may
readily be solved, for example, by iteration. When c_ is

only slightly greater than unity, e is small and the

expansions of the elliptic integrals given in appendix A
may be used to obtain a closed solution. If this is written
in the form

K= otn (27)

and only the first two terms in the expansions are used,

the exponent n is easily found to be 2/3. Comparing
equation (27) with direct numerical evaluation of K shows

this approximation to be surprisingly accurate, with, for

example, an error of only 3 percent for _ as large as 10.
For such a radius ratio, e =0.97 so that the accuracy of

equation (27) clearly far exceeds that of the

approximations used for the elliptic integrals.

In a more exhaustive investigation of the _(_)

relationship, Hamrock and Brewe (ref. 4) used linear

regression to fit equation (27) over the larger range

1 _a _ 100. They find the least squares value of n to be

2/r, only some 5 percent smaller than the limiting value,
which yields a maximum error in K of less than 4 percent

for their larger range.

For the special case of a spherical punch of radius R 0,
the preceding general analysis is more complicated than

necessary. The final result, however, is derived readily

from the general case by setting R=Ro/2 and F=0.

Equation (17) then gives K= 1 since when argument
(1 - K- 2) ]/2 = 0 integrals B and D both have the value 7r/4

and K and E both equal _r/2. The radius of the circular

contact (eq. (24) or (25)) and the penetration depth (eq.
(26)) become

4E / (28)

and

1 (3FR0)2/3 a2d=2_ \ 4E' =2_- 0 (29)

These results are the more familiar Hertz expressions,

written to show that the plane edge of the circular contact

occurs at a depth of exactly d/2. The actual contact area

at this level is consequently just half the cross section area

of the punch at the level of initial contact, z=0, which

also follows directly from equation (23).

Equations (24) to (26) together with equation (17)
furnish a complete and rigorous solution of the contact

problem for a rigid indenter of arbitrary shape on an

elastic half-space. Substituting the contact pressure (eq.

(6)) into equations (1) and (2) and integrating over the

contact region give the stress tensor and corresponding

elastic displacements at the general internal field point,
including the plane of initial contact itself. Such

calculations were first carried out for circular contact by
Huber (ref. 5) in 1904. The general elliptic contact was

not analyzed until 1917 by Belajef (ref. 6), almost four
decades after Hertz' solution for the surface stresses.

Somewhat later, Thomas and Hoersch (ref. 7) obtained

the stress components on the axis of symmetry as a

function of the eccentricity of the contact ellipse e. Such
calculations allow the principal and octahedral shear

stresses to be found; the absolute maxima of these

stresses determine the initial yield point of the half-space
according, respectively, to the criteria of Tresca or yon

Mises. The position of the maximum principal shear
stress, for example, rises from a depth of 0.78a beneath

the surface when e = 1 (line contact) to 0.57a when c =0

(circular contact), taking v to be 0.3. The magnitude of

this stress is, however, insensitive to e, varying only from

0.30p 0 in line contact to 0.31p0 in circular contact.
Another feature of interest appears in the radial stress

component % which at the surface changes sign from
compressive at contact center to tensile just inside the

contact edge. In circular contact this component ranges

from -0.8P0 at the center to 0.133/70 at the edge itself.

For brittle materials, failure is initiated at such points of
maximum tensile stress. Furthermore, since the

circumferential stress o0 remains compressive, equal but

opposite to oo outside the contact circle, the maximum
shear stress in the surface is quite appreciable. These



stressesfallmonotonicallytozeroastheinversesquareof
thedistance.

Extensions of Point Contact

In most practical applications of this mechanical

analysis, the axes of the contact ellipse are several orders
of magnitude smaller than the radii of curvature of the

indenter; therefore, the solution may be extended to
cover a wider class of contact problems. Since elastic

displacements decrease as l/r (see eq. (2)), both bodies

are then sufficiently flat within the region where

displacements are significant so that it is immaterial
whether one or both of the bodies have curvature and

whether one or both are deformable. The gap between

the bodies (given by eq. (5)) becomes the sum of the two

separate deviations from the z=0 plane, and it is thus

necessary only to express the gap in principal axis form.

If the principal axes of the two bodies are aligned, a
common situation, then, with a suitable convention for

the signs of radii, this is achieved by writing

I/Rx=(l/Rx)l+(1/Rx) 2 and likewise for the

y-curvatures. Similarly, the elastic displacements of the
bodies (given by eq. (8)) are summed and I/E' may

simply be replaced by I/E_+I/E_. Caution: A
convention is sometimes used whereby 1/E' is defined as

(1/E_+I/E_)/2, which has certain appeal when both
bodies are of the same material; however, if this

convention is adopted, then in the preceding work, E'

must be replaced by E'/2. Some of the most useful
results derived in this section for three-dimensional

contact are displayed in tables I(a) and (b) at the back of

the report (pp. 21 and 22).

Reduction of the Fundamental Solution

In the previous section the solution for a point force F
was developed to handle distributed pressure problems by

replacing F with p 6S. A corresponding replacement of F

by q 61 allows a treatment of a concentrated line force of

magnitude q per unit length acting normal to the half-
space along line element 61. If q is constant and the entire

y-axis acts as the line, an integration of equation (1)

yields a stress tensor independent of the y-coordinate.

Because the o- and 0-directions used in equation (1) are
referenced to each source element, it is convenient to

transform the tensor to Cartesian form before carrying

out the integration. Then, the P- and 0-coordinates of the
field point M taken in the y=0 plane with respect to

source F on the y-axis are as shown in figure 4. The

required tensor transformation, taking account of the

zero components in the original cylindrical system,
becomes

IM

=- ×

Figure 4.--Coordinates of field point M with respect to point force /"

acting on y-axis.

ox=o ocos20+a 0sin20

Ov = oo sin2 0 + o0 cos 2 0

1
rxy = _ (%- o0) sin 20

"rxz = 7"pz COS 0

ry z = roz sin 0

OZ : 0 z

(30)

From symmetry it is clear that rxy and ry z vanish upon
integration, but for the remaining components no way
has been found to avoid actually carrying out the rather

lengthy integrations. The results depending only on (x,z)
may be more clearly expressed in terms of the (R,_)

coordinates of figure 1:

2q sin2 g, cos ¢'
°x- 7rR

2vq
,Jy= - _ cos

rxy=0

2q sin _bcos2 _b
7"XZ _ "ire

7"yz = 0

2q cos3
°z - 7rR

(31)



It followsthattheseequationsdescribeastateof plane
strainsinceoy = u(ox + Oz) and _y = _'yz = 0. Note also that
the only role of the Poisson ratio in this quasi-two-
dimensional solution is to generate a normal stress in the

excluded y-dimension just sufficient to maintain zero y
strain. The more important involvement of u in the

original three-dimensional solution of equation (1) is
required by the compatibility relations.

Having expressed the Cartesian stress components in

polar coordinates, it is clear what their cylindrical polar
counterparts are. By inspection, all components in this

representation are zero except for oR and oy:

2q
_'R= - _r_ cos ¢

2_,q
oy = - _'-Kcos _ = _aR

(32)

Thus, in the y-plane, this somewhat lengthy analysis has

reduced the stress system to a single radial compressive

stress (with no shear). This system is so simple that it is

often used as the starting point in elementary treatments.

The displacements produced by this stress system may be

found, like the stresses, by integrating the three-
dimensional result, but it is actually easier to derive them

directly from the stresses of equation (32). Neither

approach avoids the problem of the logarithmic
divergences of the displacements at R--0 and R-- oo. The

former coincides with the singularity in the stress so that

it makes physical sense to excise a small region around

the origin in the same manner as for the three-

dimensional solution. The divergence at large distances in
regions which are stress-free is somewhat more

troublesome, since it deprives the solution of an

undisplaced region of the contact plane to serve as the

natural reference level for displacements. Instead, a finite

datum point is forced on the solution and its choice

affects the form, if not the content, of subsequent

expressions for various displacements of interest.

In the cylindrical system of equation (32) one useful

form of the displacement components (u,v,w) in the
(R,y,_b) directions may be written

u- q (2 cos _bln R 1- 2v )7rE' doo + 1--u 4' sin

v=0

w = _ 2 sin _bIn
R 1 -2u b cos _b+ sin _b")
d O 1 -u 1 -u/

(33)

again showing that this is plane strain. The parameter d o
is chosen as the reference depth beneath the surface z = 0

at which the displacement in the symmetry plane x=0
vanishes. The azimuthal component w has been made

antisymmetric about this plane.

Contact In Two Dimensions

Rigid Cylinder and Elastic Half-Space

For contact problems the important part of the

solution is again the normal (downward) displacement of

the original bounding surface z = 0, given in this case by

w(R, - 7r/2) = - w(R,r/2) =

]- rE_ In + 2(11u) (34)

This is applied first to the contact of a rigid cylindrical
punch with an elastic half-space, where initial contact is

along a generator touching the y-axis. If only normal

displacements are matched, the technique follows exactly

that for frictionless point contact. An x-dependent

pressure distribution p(x) dx replaces the line force q and
the integral of equation (34) is matched to the azimuthal

cross section of the indenter. Shear stresses in the initial

contact plane are again zero. The choice for p(x), guided

by equation (6), is taken to be the semielliptical
distribution

:po (1 - / (35)

so that the total load per unit length is just

7["

q = _P0 a (36)

The resultant z-component of the displacement in the
z = 0 plane then becomes

2el ,]-w(x)= _ In do 2(1- u)

2P0 I a (I_X'2_ 1/2rE' -_-] In [x-x'ldx'
--Q

or, expressing the integral in standard form,



2q,[ d0 1 ]-w(x)= _ In a 2(l-v)

iI --X' dX'2p0aTrE' (1 -x'2) I/2 In Xa
1

(37)

When combining equation (34) with the pressure

distribution of equation (35), r becomes the distance

between the pressure element and the field point, which

accounts for the appearance of the modulus of the

relative coordinate in the integral. Similarly, d is the

distance between the pressure element and the datum
point so that equation (34) requires generalization to

accommodate an arbitrary datum before incorporation

with the distributed pressure. On the assumption,

however, that the datum is chosen at a distance large

compared to the extent of the contact pressure, the

variation of this distance has been neglected in arriving at

equation (37). In the three-dimensional case, the

reference point is taken at infinity and this consideration
never explicitly arises.

The remaining integrand in equation (37) is singular
for points within the contact strip flanking the y-axis out

to distance a on either side. Taking the Cauchy principal

value for the integral as indicated by the modulus sign

leads to the following closed forms:

fl -x'2) 1/2 x

-1

lr(_ln2_ 1 x_)= _ _ + ]xl<_a

fl ( )l/21n a dx E [-ln2-_l-x'2 X_x, ,= _r 1

1

+In[ +(a_2-1) '/2]

a 35 -1 _l>a

(38a)

x 2
+--

a2

(38b)

As before, the contact dimension must be determined

by matching the displaced surface to the indenter shape

within the contact region. Corresponding to equation (5),

if R x is the radius of curvature of the indenter at the point

of initial contact, then the local shape in general is given
by

x 2

Zp = d- 2R x (39)

For two-dimensional contact, radius R x becomes
identical with radius R, defined previously as the

reciprocal of the sum of the x- and y-curvatures. We shall

therefore suppress the x subscript in subsequent

expressions referring to two-dimensional cases. The

displaced surface according to equations (36) to (38) may
now be written

-w(x)= _; In Ixi_aa 2(1 - v) a2
(40)

which matches equation (39) in form. The assumed

pressure distribution is thus consistent and may be made
to fit the physical conditions of this problem by choosing

the contact semiwidth a and penetration depth d to be

=2(Rq) 1/2a

2q [ 2d0 v ]d= _E_ ln-a 2(1L-v)

(41)

(42)

These results correspond to the three-dimensional

expressions given in equations (24) to (26) and show that
the linear size of the contact zone increases here as the

1/2 power of the load per unit length. The penetration

depth increases essentially linearly with load except, as

equation (42) shows, there is also a weak logarithmic

dependence from the appearance of a in the bracket.
Because of the freedom of choice for the reference depth

d o, no particular relationship exists between a and d
which would correspond to equations (26) or (29) for

point contact.

Characteristically, d o might be assigned a value

comparable to R. A typical example of the effect of

choosing different reference positions may be given by

shifting the datum from (x,z) = (0,d0), a depth d o beneath

the indenter, to (d0,0), a distance do to the side in the
original undisplaced surface. Reexpressing the

displacements of equation (33) in accordance with this

new choice leads to +1/2 in place of the term

- v/2(1 - v) within the bracket of equation (42) for d.

As the distance Ix[ from the contact zone increases,
equations (37) and (38) show that the normal surface

displacement increases without limit as In (jxl/do) in the

direction opposite to that of the applied force. Such
behavior is of course expected from the discussion of the

fundamental displacements given in connection with

equation (33).
With the contact width known as a function of load,

the rigid punch problem can now be solved completely
for stress and strain tensors by appropriate combination



of thepressuredistributionof equation(35)with the
basiclineforcesolution(eqs.(31)and(33)).Thefirstto
performsuchcalculationswereHuberandFuchs(ref.8),
whilemorerecently,elegantsolutionshavebeenprovided
by Poritsky(ref. 9) andSmithandLiu (ref. 10).In
appendixB, thestraightforwardintegrationof equation
(31)leadsdirectlyto thestresstensorgivenbyequation
(B15).Plotsof thesestressintensitiesarepresentedin
figures(6)to (8)whilesomespecialcase:,of interestare
discussedherein moredetail.

Considerfirstthesurfaceof thehalf-space_'=0.From
equation(BI2)it followsthat o_2= +(_2-1) where the

choice of sign must be determined by the requirement

that/3 be real in equation (B 11). This leads to _2 = 1 - _2

when _2<1 (inside the contact zone) and ot2=_2-1
when _2> 1 (outside the contact zone), so that the actual

value of _2 is never negative. Correspondingly,

/_ = (1 --_2)1/2 inside and zero outside. When the surface

is approached by taking lim _'--0, the stress components

are all found to vanish for points external to the contact

region. Internal to the contact region, only the shear

stress rxz is zero, while the normal stresses ox and oz are
equal to each other and given by

Ox=Oz= -P0(l- s"2)1/2 (43)

The z-component, of course, is just the contact

pressure (eq. (35)), which is one of the boundary

conditions of the model, but the x-component is perhaps

unexpected. It produces a state of two-dimensional

uniform (hydrostatic) compression in the surface layer,

as a comparison of figures 6 and 8 also reveals. While the

vanishing of oz and rxz on the surface outside the contact
zone are also boundary conditions of the model, the

vanishing of ox is not a requirement and again contributes
some new information to the contact problem. In fact,

this behavior of ox in two dimensions contrasts strongly
with the behavior of the three-dimensional contact

discussed earlier, where the corresponding normal

component of stress in the radial direction actually

reversed sign and became tensile just inside the contact
boundary.

Another special case of interest is found by setting _ = 0

to obtain the internal stress components on the symmetry

axis of the indenter. In this case, c_=/3 = (1 + s"2)1/2. Again

the shear stress rxz vanishes, as we expect by symmetry.
The nonzero normal components are given by

Ox_ Po [2s"2 + 1- 2f(1 + _'2)1/2]
(1 + _2) 1/2

P0

(1 + _-2)1/2

(44)
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which are plotted in figure 5. The normal stress or, equal

to _, times the sum of ox and oz, is also shown, again for
the value of u-0.3. At large depths these components

display explicitly the 1/_" distance dependence

characteristic of the plane strain condition.

Now that the normal stresses are no longer equal, the

maximum shear stress rm lies in planes bisecting the x-and

z-directions with a magnitude of ]Oz-Ox/2. This
component is displayed in figure 5, which shows the

previously noted maximum value of 0.3p 0 at a depth

approximately three-fourths of the Hertz semiwidth a,

the initial yield point. By contrast, since rm vanishes

everywhere at the boundary, the material immediately

adjacent to the indenter is dead and not expected to flow.

Extensions of Line Contact

Extension of the analysis to cases where both

contacting members have curvature and elasticity is less

trivial in two than in three dimensions, when it sufficed

simply to introduce a composite curvature and elastic

modulus for the pair. The validity of this simple

adaptation rested directly on the effective vanishing of

the displacement in regions where curvature produced
significant depart ure of either undeformed body from the

ideal plane assumed for the basic solution. In two

dimensions no part of this surface remains undisplaced so

that the procedure of transferring curvature from one

side to the other, known as bending the gap, represents at
best a crude approximation which might be expected to
break down in some situations.

Consider first the contact of an elastic cylinder with a

rigid plane, the inverse of the situation described by the
fundamental solution. If E' and u now refer to the

cylinder, then equation (41) still gives a good

approximation to the contact width provided as always
this turns out to be small compared with R. In the

1.0

m"

.g .5

g
E

I 2 3 4 5 6 7 8

Nondimensional depth, _"

Figure 5.--Stress components for points along indenter axis internal to

elastic half-space. Both distance and stress are given in nondimen-

sional forms defined by equations (BI) and (B2).



expression for d (eq. (42)), however, the depth d o is now
measured in the cylindrical body rather than in the half-

space, and at distances do-R from the contact the shape
of the cylinder may depart significantly from that of the

half-space. Moreover, the parabolic form of equation

(39) is often taken to approximate a circular roller, in

which case the infinite half-space has been bent into a

space finite in two dimensions. This emphasizes the

nature of the approximations involved and the need to
exercise judgment in selecting a datum. A natural choice

in such cases is to fix the center of curvature by setting

do=R, whereupon the distance d of equation (42)
becomes the shortening 6R of the radius in the direction

of the applied force q:

6R= _, In 2(1Lv)

The approximately equals sign in equation (45) is a

reminder that this estimate of 6R rests on the as yet

untested bending hypothesis. A more accurate expression

is presented in equation (47) based on an elastic solution

for the line force acting on a circular cylindrical surface.
For parallel contact of two different cylinders, it

follows from equations (39) and (40) that the contact

semiwidth a may still be obtained from equation (41), as

in three dimensions, by interpreting R- 1 as (R 1- l +R 2- l)

and E'-I as (EI-I+E½ -l). To find the approach of

centers, however, these variables alone are insufficient

because of the appearance of R and u in equation (45)

referring individually to each cylinder. The compliance is

most clearly expressed just by adding the individual 6R

values in which, of course, a and q are common.
Reduction to a single equivalent roller and flat is, in this

respect, no longer particularly simple.

For the diametral reduction of a roller in compression

between two parallel rigid flats, it is merely necessary to
double the right side of equation (45). If the flats

themselves are elastic, however, a little care is required

first to substitute appropriate composite variables when

finding a and second to appreciate that if the flats are of

dissimilar materials, the two contact widths will not be

equal. Thus, diametrically opposed radii are shortened by

different amounts whose sum gives the net compliance.
As a final application, this analysis will be used to

demonstrate its own limitations in treating the
deformation of any body other than the half-space.

Consider again the preceding example of the diametral

compliance of a cylinder between rigid flats. If the gap
bending hypothesis is correct, the analysis should yield a

diametral compliance independent of the arbitrary

reference point. Let this datum be chosen some distance

l<R from the midplane along the shortened diameter.

Then, according to equation (42), the compliance 6D

obtained by summing the decrements of the two segments
will be

l['n ]
7rE' 2(1 v)

[ ])+_ ln(R+l)+ln(R-l)

a-E' a 2(I-v) + 2In 1- _ (46)

This expression has explicit, though weak, dependence on

the datum via 1. Yet another result is obtained if d o = 2R

is inserted directly in equation (42). Use of the bending

hypothesis for two-dimensional problems involving
compliance is thus generally inaccurate or even

inconsistent (ref. 11).

A resolution of this difficulty is to begin with a

different basic elastic solution applying directly to curved

bodies. One such solution, for a circular cylinder loaded

by two equal and opposite line forces acting at the ends of
a chord, has been given (ref. 12) and used in a contact

analysis (ref. 13). This leads again to the pressure

distribution of equation (35) in which the contact

semiwidth a of equation (41)is, however, reduced slightly

by the appearance of the factor (1 +2q/_rE'R) in the
denominator. From the discussion of equation (42) it

might be expected that the effect of the exact solution on

d would be seen chiefly in the second term in the bracket,

already shown to be sensitive to choice of datum. Thus,

in addition to requiring the new expression for a in the

first term, the rigorous solution also replaces - _,/2(1 - z,)

by (In 2- 1/2):

_rL'2q'[ 2R ( _)]6R= _ In-- + ln2-
a

(47)

Setting a/R = 10 -n, the fractional error in the earlier
approximation for a amounts to (10-n/2) 2 whereas for

6R given in equation (45) it is far larger, roughly - 0.2/n

for typical values of u. In practical situations n could be

as small as 2; thus, in the worst case, application of plane

Hertz theory to a cylinder overestimates a by a negligible

0.0025 percent but underestimates 6R by as much as 10

percent.

It may be seen then that the gap bending conjecture

works well in determining contact widths but encounters

difficulties in predicting compliances where the arbitrary
datum is involved. From this it is perhaps not surprising

that the contact semiwidth of equation (41) may be found

as the appropriate limit of equation (25) for the

semiminor axis in three-dimensional contact, whereas the



correspondinglink betweencompliancesin two- and
three-dimensionalsituationsdoes not exist. The
connectionbetweenlineandpointcontactloadedto the
samemaximumpressureP0 may be established by

eliminating P0 between equations (7) and (36) to obtain

3 F

q- 2 2b (48)

As Ry increases without limit, so F-- 1, K-- oo, /3-- 1, and
K--In 4r. To maintain a finite load per unit length of the

elongated contact ellipse, the total load F also diverges
while satisfying equation (48). Substituting these limiting

values in equation (25) yields the correct two-dimensional

result for the contact semiwidth (eq. (41)). However,

while the corresponding limit of equation (26) correctly

predicts a logarithmic divergence in the two-dimensional

compliance, it clearly cannot be used to introduce a

datum level d 0. Tables II(a) and (b) exhibit graphically a
number of the more important results of this section on

two-dimensional contact problems (see pp. 23 and 24).

Line Contact of Real Surfaces

A further interesting development of two-dimensional

contact analysis was carried out by McCallion and

Truong (ref. 14) when they investigated the effect of
surface roughness on the load-compliance relation for a

rough cylinder between smooth flats. As a model of the

pressure produced by the asperity layer they used the

family of contact pressures given by

[xJ<a (49)
X2"_fl

P=P0 1 - _/

acting in opposition over a band at each end of a

diameter of the circular cylinder. The contact analysis is

based on the elastic solution for diametrically opposed

line forces acting on a cylinder (see appendix C) so that it
is limited to a/R<<l from the outset. The standard

integral corresponding to that of equation (38) now

appears with the variable exponent B in place of 1/2 but,

again provided a/R < < 1, the diametral compression can

still be evaluated in closed form. The result equivalent to
equation (45) is found to be

6R= _, /ln2R+ln2 fl
a fl+ 1/2

+ _ _(_+1/2)+7 (50)

As with the effect of transferring curvature from the rigid

to the elastic contact member, the effect of changing the
distribution of load within the narrow band of width 2a is

confined to the second term of equation (42). For the
special case/3 = 1/2 required by the matching condition in

smooth contact, _b(1) = -7 and this second term reduces

to In 2- 1/2 in agreement with the result shown earlier

(eq. (47)).

At this point a number of results for the compliance of

a cylinder and flat configuration have been derived, such

as those found in equations (42), (47), and (50). The

important differences in these expressions are determined

by which of the two contacting members possesses
curvature or elasticity, by choice of the datum, or by

distribution o1' contact pressure. Further modification

may be produced by matching tangential displacements

as part of the condition of contact. Continuing in this

vein, a paper by Nikpur and Gohar (ref. 15) exhibits no

fewer than nine different compliance formulae extracted

from the literature for comparison with a tenth

expression based on their own experimental data. Beyond
a number of purely numerical errors, probably arising

from notational difficulties, most of the apparent

conflicts between theories clearly arise from genuine
differences in the mathematical models. These are

precisely the type under consideration herein, concerned

with whether to include compliance of the platens, where

to fix the datum if this is included, what contact pressure
to use, and so forth.

Although all ten expressions predict a compliance

increasing with applied load, as required for mechanical

stability, there is no such agreement for the dependence

on cylinder radius which ranges from monotonic

increasing to constant and even to decreasing. Despite
this, the work of reference 14 does illustrate a further

important point beyond simply the need to recognize

what assumptions are built into a given model. This
sometimes overlooked point concerns the physical

validity of the assumptions themselves under the actual
conditions of measurement. The behavior of a real

surface often turns out to be rather different from that of

its ideal, smooth, isotropic counterpart (ref. 16),

demanding considerable skill and ingenuity in the

construction of faithful rather than merely solvable

mathematical models. It is this fact which continues,

some 100 years after the Hertz analysis, to justify both
theoretical and experimental studies of such an

apparently straightforward mechanical system.

Conclusions

One objective of this review has been to examine some

of the assumptions entering into the analysis of

12



mechanical contact between elastic bodies. Particular

emphasis has been placed on reducing three-dimensional

solutions to quasi-two-dimensional situations where

elementary metric properties of space introduce

difficulties by virtue of the logarithmic divergence of
elastic displacements with distance from the contact. The

variety of forms this permits for the compliance of

contacting bodies in two dimensions underlines the need

to exhibit unambiguously the assumptions on which each
rests.

The application of plane Hertz theory to the

displacement of cylindrical surfaces is based on the gap

bending hypothesis which asserts that the effect of

geometry on mechanical conditions in the contact region

is determined entirely by the algebraic sum of the

curvatures of the two contacting bodies. Stated another
way, contact between two curved surfaces can always be

reduced to contact between a plane and an equivalent
curved surface, whose curvature is the sum of the two

original curvatures. Predictions of plane Hertz theory

applied to cylinders have been compared to those of an

analysis based on exact solutions for the displacement of

cylindrical surfaces by a line force. As with its optical

counterpart in lens theory, the bending conjecture
produces results of mixed quality. Thus, in two

dimensions, the contact width is predicted with high

accuracy but the hypothesis breaks down for the

compliance, resulting in errors in practical cases as large

as 10 percent. If for a particular application only the

contact width and the semielliptical pressure distribution

are required, then, as argued by Johnson, the errors
introduced by the plane Hertz approximation are of

comparable magnitude with errors incurred by using

linearized elasticity theory, and the extra effort required

by the refined solution is hardly justified. In matters

involving compliance, however, the argument is invalid

and it becomes important to improve on the plane elastic

solution, if for no other reason than to provide at least

some error estimate of the initial approximation.

While the elastic analysis presented herein should be

sufficiently general to allow modification appropriate to

any configuration, it nevertheless seems worthwhile to
collect some of the more common results together for

easy reference. Accordingly, tables are included as a

useful and illustrative summary of the principal results of
this review.

Lewis Research Center

National Aeronautics and Space Administration
Cleveland, Ohio, August 1984
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Appendix A

Complete Elliptic Integrals

General Definitions

A general complete elliptic integral is defined by the

expression

7r/2J(k) _- _ dO
0

where A=(1-k2 sin2 _b)l/2. For particular forms of ¢I,,
the conventional notation is as follows:

,I, Notation

cos 2 0 B

sin2 0 D

A 2 _ (second kind)

1 K (first kind)

Only two of these elliptic integrals are independent since
it is clear that B+D=K and B+(1-k2)D = & The

argument of the elliptic integrals appearing in equations

(17) to (20) and (24) to (26) is given by k=_ where

= (1 -K-2) 1/2 is the eccentricity of the contact ellipse.

Series Expansions

For _ very small (nearly circular contact):

1 3
4B= 1 + 8e2+ f4+ ...

3 15
4D= 1 + _e2+• " _4+ ...

32,S 1 _2-- _e4-- = -- --.,.

71"

12 92K= 1+ + e4+
71" 4 ""

For K very large (long, narrow elliptical contact):

3
I(A-_)K 2B=I-_ -...

D=(A-1)+_ A-_ K-2+...

1( 1)g,=l+_ A-_ K-2+...

K=A+_(A-I)K 2+...

where A=ln 4K.
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Appendix B

Stress Tensor for Indentation of Elastic Half-Space by Rigid Cylindrical Punch

Equation (31) represents the stress tensor for a
O[ 1

concentrated normal line load q on the surface of an
elastic half-space, using the coordinates of figure l(b). In 0_

plane strain, two of the shear components vanish while

the normal stress in the suppressed direction is just u and

times the sum of the other two normal stresses, leaving
only three components to solve for. Under contact

011conditions, the line force q is replaced by the pressure
p(x) given by equation (35) acting over the infinitesimal 0_"

width dx, the net result being expressed as the integral

over the whole contact region where p(x) is nonzero.

Coordinates (R,_) are relative to the position of the

element dx so that the natural system to use is the

Cartesian system of figure l(b). Introducing the
nondimensional coordinates

x
_=

a

z
_-=_

a

(BI)

l (1 _ _,2)1/2(e _ _,)- - 2 R4 d(' (B5)
-1

__ __2f I (1-_'2)1/2_'d_,
R4

-I

The result may be written

(lX

rxz

(iz

_2

7r

(B6)

(B7)

and the nondimensional stress tensor

o
- (B2)

Po

the integrals for the three components of interest become

O'x(_, _') 1 f(_ -- _')2_ "_

S1_z((,_-) 2 (I -- _ ,2)1/2
= - 7n" R4 (1_ __,)_-2 dl_' (B3)

1

_(_, _-)] f3

where now R2=((- _')2+ _.

The integrals involved here may all be evaluated from

the single integral

fl/1 (_, _.) = (1 --_'2) 1/2
R2 d_' (B4)

-1

and its partial derivatives

To evaluate 11 we note it may be cast in the form

sl ]:'2I 1/2 ]1 (1-.___ d_' m8)IJ(GD=Im -? -I z

where z is the complex variable (+if. Written in this

way, the integral in equation (BS) is now of standard
form and may be expressed as

S1 [ ]/2(Z) = (1 -_'2) 1/2

-1 z-(' d('=Tr Z--(Z2-I) 1/2
(B9)

Note that I2(z) is analytic everywhere except when Iz[ = 1

at the edges of the contact region on the bounding
surface, so that it is actually the z-derivative of

fl (1 --_'2) 1/2 In (z-(')d(' (BI0)I3(z) = - 1

In turn, I 3 is closely related to the integral in equation

(38) which essentially is the limit of 13 as _'--0. Thus it is
possible to derive all the present two-dimensional results

15



from I3(z) as in reference 9, although it proves

algebraically simpler to begin with Ii(z).

To obtain 11 we first extract the imaginary part of
(z 2 - 1) 1/2, denoted by/3. The actual expression for/3 may

be written

fl = [0/2-- (_2 -- _2--1)]1/2/_ (BI1)

with 0/given by

0/4 = (_2 -- _ -- 1 )2 + 4_2_ (Bl2)

In terms of the auxiliary variable/3 we have

I l = 7r(fl/_'- 1) (B13)

leading to

o/3
a'x= 2_--/3 - _-_

a/3
r_xz= _'_ (U14)

a/3
_= -/3+ra?

More explicitly in terms of 0/and/3, equations (B14) may
be written

8"x = 2¢-/3 - (_2 + _'2+ 1 + 0/2)(_/2/30/2)

_xz = (_2 + _ - 1 - 0/2)(_'_/2/30/2) (B15)

°'z = --/3 + (_2 + _2 + 1 + 0/2)(_"2/2/30/2)

In figures 6 to 8 these stress components have been

plotted on planes at various depths _"beneath the contact

plane as functions of the transverse coordinate _.

1.0

.8

=_ .6

u

Po .4

t_

.2

0
-3

1t4

- / \ 1t_

/ _ / --7--- 3/4

--..._7_-&
I ] I _ "--1

-2 -1 0 1 _ 3

N0ndimensi0nal x-c0ordinate,

Figure &--Curves of stress component o_. perpendicular to load q

applied along normal to surface _= 0.
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Figure 7.--Curves of shear stress component _z for load q normal to surface S"=O.
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0
-4 -3 -2 -1 0 l 2 3 4
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Figure 8.--Curves of stress component _z along direction of load q normal to surface _'= O.
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Appendix C

Two Opposed Line Forces Acting on a Circular Cylinder

The stress tensor for the problem of two diametrically

opposed concentrated line forces acting on a circular
cylinder is derived readily from that of equation (32) for a

single line force on a plane boundary by observing that
the surfaces of constant radial stress in that case are

circular cylinders tangent to the half-space at the origin

with diameter D=R/cos J/. The corresponding radial 2q{ 1 cos3 _ cos3ffl
stress value is -2q/TrD. Superimpose on this the stress °z.= -- \a- D R R 1 /
arising from an opposed line force ql acting at the

opposite end of some diameter D (see fig. 9). Since

_b+ _bI = r/2 for any point M on this cylindrical surface,
then for such points only the (R, ff) directions for q

coincide with the (_bl,R 1) directions, respectively, for ql-
Thus, if q = ql, the state of stress at M in the x,z-plane ry z = rxy = 0

becomes an isotropic pressure (-2q/D). Finally, reduce

this pressure to zero by superimposing everywhere an

isotropic tension of the same magnitude. The cylindrical

surface is now stress free except along the lines of action

of the two forces themselves. The cylinder may thus be

mechanically isolated from the elastic half-space, and the q 1 - 2u 1
resulting stress tensor becomes the required solution for a u - 7rE' 1 - u
cylinder of the particular diameter D. For the general

interior point with coordinates (R,¢_) or (Rl,ffl), the stress
components referred to fixed (x,y,z) directions have the

plane strain values

q

r Z

Figure 9.--In x,z-plane two concentrated forces act along normal to

bounding surface of elastic half-space, shown shaded. Force q acts at

surface along + z-axis while force ql acts at depth D in opposite direc-

tion. M is any point on circle constructed with segment D of z-axis as

diameter, having polar coordinates (R,ff) and (Rj,_kl) relative to

points of action of two forces.

2q(; cos C/sin2 ¢z cos _1 sin2 ¢1 )OX = __
7r R R 1

Oy=U(Ox+Oz) 2uq(2_ cos_ cos¢,l)
rr R R 1

2q (cos2 ff sin ff cos2 _bl sin _bl)
rxz = - _ R R 1

(C1)

!
Corresponding Cartesian displacement components are

given by

[(_+¢1) 2(1-2v)

1 }x(sin 2_b+ sin 2_bl)- _)(R sin _+R 1 sin _'1)

v=O

w- q [21n R l_urE' _ + (sin2 _b- sin2 ¢l)

]1 _ 2 _ 1
(R cos f-R 1 cos ffl)|

1-vD ..I

q (21nDg 0 I-2vD-_D2_do ) rE' f-;

(C2)

In this representation, the datum point still lies on the

z-axis at distance d o from the application point of the
first force q. Since the shortening 61(x) of a chord parallel

to the z-axis at distance x is just the difference between w
values at its ends, it is clear from the separability of terms

in do shown in equation (C2) that 61 is now quite
independent of reference point. When x<<D,

approximate values for (RAb; Rl,_b l) are (x, Tr/2; D,0) at

the upper end and (D,0; x,r/2) at the lower end of the

chord. The shortening is found to be

18



(C3)

by substituting in equation (C2) for w.

The logarithmic singularity in equation (C3) is easily

handled in the usual way by distributing the concentrated

line force across a small but finite width. A distribution

of the type in equation (49) then leads to the compliance
result of equation (50). In particular for /3= 1/2, the

contact matching condition is met for compression of the

cylinder between parallel flats, provided the contact

semiwidth is obtained from equation (41). The
compliance is then given by equation (47).
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TABLE1--THREE-DIMENSIONALSTRAIN

[Rigidbodiesareshownshaded.Whenonebodyonlyiselastic,itselastic modulus is E', while subscripts are used to distinguish bodies of

different modulus. A similar convention applies to radii of curvature. Negative values denote the radius of a surface conca_ e as viewed from

outside the material.]

(a) One body elastic

Rigid ellipsoid on elastic half-space a

General ellipsoid, semiaxes A 0, &), Co Sphere, radius Re,

,7

Y

I I

,r z Pll --

R_ =R, =Ro

1/R = 2/RI)

F=O

K=I,_=O

1 E'a _ ( 3E'2 I-')l
28 R 87rgZR2K

I t

a = (3FR,,/4t:.")

b=a

d = (a2/Ro)

I X 2 + _,,2 I I 2P = Po I - - - :
a2

F 2

P = = 3 Po7r(12

I 2E'a 1
po= =

_r R o rc \ Ro 2 ]

Rigid flat on elastic ellipsoid or sphere

kl-'- 2o-.-IJ
I _ L// x_

7/////'/'>,,_/,,,I//
;",

d-/ r Z

rd

'//////L

; ;///////

All results for the rigid ellipsoid on elastic half-space apply, d is the approach

of the center of the elastic body toward the flat.

Corollary:

The diametral shortening of an ellipsoid or sphere compressed between two

parallel rigid flats is 2d.

a I hc ktlgllllwrll o[ tile c{}rllpielc elliptic, iTNegra[, 11, D, _;, and /,, Is , irl cxcr; Inx_ll]_e
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TABLEl.--Concluded.

(b)Twobodieselastic

Twoelasticelli)soidswithalignedprincipalaxes

_d2 "-_\

dt _/.... _ "

E I'

:- /..

El N

\_//

E_ x_ (dI)t

y X

,(,)
,(i)
I 1 1

E' E,' E 2

In terms of these composile variables all formulae of lable l(a) apply.

d = d I + d 2 is the approach of centers, where d, - [E'/E,']d is the compliance of

body i for i= 1,2.

Corollary 1:

For contact between elastic ellipsoid (1) and flat (2), take the limit as the radii

of body 2 become infinite, d is the approach of center of ellipsoid 1 toward

undeformed surface of flat, d_ is the compression of the ellipsoid itself; and d2

is the indentation depth of the flat.

Corollary 2:

For compression of ellipsoid between two dissimilar ellipsoids or flats,

appropriate upper (u) and lower (/) composite variables are required, yielding

individual upper and lower values of quantities a, b, and d. Net diametral

compression for the cenlral ellipsoid 1 is [Eud u + E/dt]E (.

Corollary 3:

For contact of cylinders crossed at right angles, take the limit as (R,) 2 and

(Rv) t become infinite.
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TABLEII.--PLANESTRAIN

[Rigidbodiesareshownshaded.Whenonebodyonlyiselastic,itselasticmodulusisE', while subscripts are used to distinguish bodies of

different modulus. A similar convention applies to radii of curvature. Negative values denote the radius of a surface concave as ,,iewed

from outside the material.]

(a) One body elastic

Rigid cylinder on elastic half-space

14-- 2a _ do

Z r

\ _rE' /

d= In
rrE' a 2(1 _ u)

q r

P= _a = 4 p0

E'a (E'q) 12
P°=27 = ,,7_/

(A)

(BJ

Rigid flat on elastic circular cylinder a

/ "<_.//// a//...(/

/ ;/./!' >_.. /
/ /'_,-.,

////////2) 59- -,

The contact semiwidth is given by' equation (A}.

The radial shortening or approach of center of elastic body toward the

flat becomes

(C)4R 1 )2q lna-id= 7rE'

Corollary:

The diametral shortening of a cylinder compressed between two

parallel rigid flats is 2d.

alu ohlain apprl_'_ilnal¢ resulls lc_r nonclrcu[ar cylinders, R mtlxt be assigIled t_ao dlstincl meanings: to find ¢onlacl senli_idt|l a, R is Ihe radius ot curvature at the initial conlact

point; lit find ,:_nlpliallCe d, R is the distance ol the geometric CelllCr of c)lindcr [rom the initial conlacl point. The at'_uracy of Ihi_ dpproximatioll for d decrea_c_ as these I_o _ a]u¢_ tot

R diverge
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TABLEll.ICOncluded.

(b)Twobodieselastic

Twoelasticcircularcylindersa,b

I l I
= +

R R I R z

1 I 1
= +

E' E I' Ej

In terms of these composite variables the contacl semiwidth is given by

equation (A).

Tile compliances d, follo_ from equation (C) using individual values

for E' and R. Thus, net compliance or approach of centers is

2q ( 4 I) 2q (,nR I lnR,)= in 4 + "
7r/:7' a 2 _r E[ /:'_

Corollary:

For compression of cylinder belween two dissimilar cylinders,

appropriate upper (1¢) and lower (/) composite variables are required,

yielding individual upper and lower values of quantities a and d. Net

diametral compression for the central cylinder t is

4R I 1 )
4q In

d=(dl)" +(dl)/= _r/: I' _a_,al 2

at_.) Oblahl approxilllale results lor iv.ln_.ircLliar cyiinder_, the _anl¢ procedure as gJlcn il1 the footnoI_, to t_lbl¢ ]i(ill _houEd ht: tl_lh_',led.

bin limit R 2 - _ cylinder 2 he¢onle_ a I]al ! |li_ _onligLiration may be included pro_ ided lh_ expression _l d 2 i_ gi_ cn h,, t'q_lll_n (H) ralhcr than h._ _qualion I_ ). lhe inlini_c rc_ll]l in

_he laHer ca_e i_ corrccl bu_ unJntorlltali_e
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